Porosity of mutually nearest and mutually furthest points in Banach spaces

نویسندگان

  • Chong Li
  • Hong-Kun Xu
چکیده

Let X be a real strictly convex and Kadec Banach space and G a nonempty closed relatively boundedly weakly compact subset of X : Let BðX Þ (resp. KðXÞ) be the family of nonempty bounded closed (resp. compact) subsets of X endowed with the Hausdorff distance and let BGðXÞ denote the closure of the set fAABðX Þ : A-G 1⁄4 |g and KGðX Þ 1⁄4 BGðX Þ-KðXÞ: We introduce the admissible family A of BðX Þ and prove that E AðGÞ (resp. E o ðGÞ), the set of all subsets FAADBGðX Þ (resp. FAADBðX Þ) such that the minimization problem minðF ;GÞ (resp. the maximization problem maxðF ;GÞ) is well-posed, is a dense Gd-subset of A: Furthermore, when X is uniformly convex, we prove that A\E AðGÞ and A\E o ðGÞ are s-porous in A: r 2003 Elsevier Inc. All rights reserved. MSC: primary 41A65; 54E52; secondary 46B20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Well-posed Mutually Nearest and Mutually Furthest Point Problems in Banach Spaces

Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let K(X) denote the space of all non-empty compact convex subsets of X endowed with the Hausdorff distance. Moreover, let KG(X) denote the closure of the set {A ∈ K(X) : A∩G = ∅}. We prove that the set of all A ∈ KG(X) (resp. A ∈ K(X)), such that the minimizat...

متن کامل

On Almost Well-posed Mutually Nearest and Mutually Furthest Point Problems

Let G be a nonempty closed (resp. bounded closed) subset in a strongly convex Banach space X. Let BðXÞ denote the space of all nonempty bounded closed subsets of X endowed with the Hausdorff distance and let BGðXÞ denote the closure of the set fA 2 BðXÞ : A \ G 1⁄4 ;g. We prove that E(G) (resp. Eo(G)), the set of all A 2 BGðXÞ (resp. A 2 BðXÞ) such that the minimization (resp. maximization) pro...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

Perturbation of frames in Banach spaces

In this paper we consider perturbation of Xd-Bessel sequences, Xdframes, Banach frames, atomic decompositions and Xd-Riesz bases in separable Banach spaces. Equivalence between some perturbation conditions is investigated.

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2003